Grainstats Modules
Contains class for calculating the statistics of grains - 2d raster images.
GrainStats
Class for calculating grain stats.
Parameters
data : npt.NDArray 2D Numpy array containing the flattened afm image. Data in this 2D array is floating point. labelled_data : npt.NDArray 2D Numpy array containing all the grain masks in the image. Data in this 2D array is boolean. pixel_to_nanometre_scaling : float Floating point value that defines the scaling factor between nanometres and pixels. direction : str Direction for which grains have been detected ("above" or "below"). base_output_dir : Path Path to the folder that will store the grain stats output images and data. image_name : str The name of the file being processed. edge_detection_method : str Method used for detecting the edges of grain masks before calculating statistics on them. Do not change unless you know exactly what this is doing. Options: "binary_erosion", "canny". extract_height_profile : bool Extract the height profile. cropped_size : float Length of square side (in nm) to crop grains to. plot_opts : dict Plotting options dictionary for the cropped grains. metre_scaling_factor : float Multiplier to convert the current length scale to metres. Default: 1e-9 for the usual AFM length scale of nanometres.
Source code in topostats/grainstats.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 | |
__init__(data, labelled_data, pixel_to_nanometre_scaling, direction, base_output_dir, image_name=None, edge_detection_method='binary_erosion', extract_height_profile=False, cropped_size=-1, plot_opts=None, metre_scaling_factor=1e-09)
Initialise the class.
Parameters
data : npt.NDArray 2D Numpy array containing the flattened afm image. Data in this 2D array is floating point. labelled_data : npt.NDArray 2D Numpy array containing all the grain masks in the image. Data in this 2D array is boolean. pixel_to_nanometre_scaling : float Floating point value that defines the scaling factor between nanometres and pixels. direction : str Direction for which grains have been detected ("above" or "below"). base_output_dir : Path Path to the folder that will store the grain stats output images and data. image_name : str The name of the file being processed. edge_detection_method : str Method used for detecting the edges of grain masks before calculating statistics on them. Do not change unless you know exactly what this is doing. Options: "binary_erosion", "canny". extract_height_profile : bool Extract the height profile. cropped_size : float Length of square side (in nm) to crop grains to. plot_opts : dict Plotting options dictionary for the cropped grains. metre_scaling_factor : float Multiplier to convert the current length scale to metres. Default: 1e-9 for the usual AFM length scale of nanometres.
Source code in topostats/grainstats.py
_calculate_centroid(points)
staticmethod
Calculate the centroid of a bounding box.
Parameters
points : list A 2D python list containing the coordinates of the points in a grain.
Returns
tuple The coordinates of the centroid.
Source code in topostats/grainstats.py
_calculate_displacement(edges, centroid)
staticmethod
Calculate the displacement between the edges and centroid.
Parameters
edges : npt.NDArray Coordinates of the edge points. centroid : tuple Coordinates of the centroid.
Returns
npt.NDArray Array of displacements.
Source code in topostats/grainstats.py
_calculate_radius(displacements)
staticmethod
Calculate the radius of each point from the centroid.
Parameters
displacements : List[list] A list of displacements.
Returns
npt.NDarray Array of radii of each point from the centroid.
Source code in topostats/grainstats.py
calculate_aspect_ratio(edges, hull_simplices, path, debug=False)
Calculate the width, length and aspect ratio of the smallest bounding rectangle of a grain.
Parameters
edges : list A python list of coordinates of the edge of the grain. hull_simplices : npt.NDArray A 2D numpy array of simplices that the hull is comprised of. path : Path Path to the save folder for the grain. debug : bool If true, various plots will be saved for diagnostic purposes.
Returns
tuple: The smallest_bouning_width (float) in pixels (not nanometres) of the smallest bounding rectangle for the grain. The smallest_bounding_length (float) in pixels (not nanometres), of the smallest bounding rectangle for the grain. And the aspect_ratio (float) the width divided by the length of the smallest bounding rectangle for the grain. It will always be greater or equal to 1.
Source code in topostats/grainstats.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 | |
calculate_edges(grain_mask, edge_detection_method)
staticmethod
Convert 2D boolean array to list of the coordinates of the edges of the grain.
Parameters
grain_mask : npt.NDArray A 2D numpy array image of a grain. Data in the array must be boolean. edge_detection_method : str Method used for detecting the edges of grain masks before calculating statistics on them. Do not change unless you know exactly what this is doing. Options: "binary_erosion", "canny".
Returns
list List containing the coordinates of the edges of the grain.
Source code in topostats/grainstats.py
calculate_points(grain_mask)
staticmethod
Convert a 2D boolean array to a list of coordinates.
Parameters
grain_mask : npt.NDArray A 2D numpy array image of a grain. Data in the array must be boolean.
Returns
list A python list containing the coordinates of the pixels in the grain.
Source code in topostats/grainstats.py
calculate_radius_stats(edges, points)
Calculate the radius of grains.
The radius in this context is the distance from the centroid to points on the edge of the grain.
Parameters
edges : list A 2D python list containing the coordinates of the edges of a grain. points : list A 2D python list containing the coordinates of the points in a grain.
Returns
tuple[float] A tuple of the minimum, maximum, mean and median radius of the grain.
Source code in topostats/grainstats.py
calculate_squared_distance(point_2, point_1=None)
Calculate the squared distance between two points.
Used for distance sorting purposes and therefore does not perform a square root in the interests of efficiency.
Parameters
point_2 : tuple The point to find the squared distance to. point_1 : tuple Optional - defaults to the starting point defined in the graham_scan() function. The point to find the squared distance from.
Returns
float The squared distance between the two points.
Source code in topostats/grainstats.py
calculate_stats()
Calculate the stats of grains in the labelled image.
Returns
tuple Consists of a pd.DataFrame containing all the grain stats that have been calculated for the labelled image and a list of dictionaries containing grain data to be plotted.
Source code in topostats/grainstats.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | |
convex_hull(edges, base_output_dir, debug=False)
Calculate a grain's convex hull.
Based off of the Graham Scan algorithm and should ideally scale in time with O(nlog(n)).
Parameters
edges : list A python list containing the coordinates of the edges of the grain. base_output_dir : Path Directory to save output to. debug : bool Default false. If true, debug information will be displayed to the terminal and plots for the convex hulls and edges will be saved.
Returns
tuple[list, list, list] A hull (list) of the coordinates of each point on the hull. Hull indices providing a way to find the points from the hill inside the edge list that was passed. Simplices (list) of tuples each representing a simplex of the convex hull, these are sorted in a counter-clockwise order.
Source code in topostats/grainstats.py
find_cartesian_extremes(rotated_points)
staticmethod
Find the limits of x and y of rotated points.
Parameters
rotated_points : npt.NDArray 2-D array of rotated points.
Returns
Dict Dictionary of the x and y min and max.annotations.
Source code in topostats/grainstats.py
get_angle(point_1, point_2)
staticmethod
Calculate the angle in radians between two points.
Parameters
point_1 : tuple Coordinate vectors for the first point to find the angle between. point_2 : tuple Coordinate vectors for the second point to find the angle between.
Returns
float The angle in radians between the two input vectors.
Source code in topostats/grainstats.py
get_cropped_region(image, length, centre)
Crop the image with respect to a given pixel length around the centre coordinates.
Parameters
image : npt.NDArray The image array. length : int The length (in pixels) of the resultant cropped image. centre : npt.NDArray The centre of the object to crop.
Returns
npt.NDArray Cropped array of the image.
Source code in topostats/grainstats.py
get_shift(coords, shape)
staticmethod
Obtain the coordinate shift to reflect the cropped image box for molecules near the edges of the image.
Parameters
coords : npt.NDArray Value representing integer coordinates which may be outside of the image. shape : npt.NDArray Array of the shape of an image.
Returns
np.int64 Max value of the shift to reflect the croped region so it stays within the image.
Source code in topostats/grainstats.py
get_start_point(edges)
Determine the index of the bottom most point of the hull when sorted by x-position.
Parameters
edges : npt.NDArray Array of coordinates.
Source code in topostats/grainstats.py
graham_scan(edges)
Construct the convex hull using the Graham Scan algorithm.
Ideally this algorithm will take O( n * log(n) ) time.
Parameters
edges : list A python list of coordinates that make up the edges of the grain.
Returns
tuple[list, list, list] A hull (list) of the coordinates of each point on the hull. Hull indices providing a way to find the points from the hill inside the edge list that was passed. Simplices (list) of tuples each representing a simplex of the convex hull, these are sorted in a counter-clockwise order.
Source code in topostats/grainstats.py
is_clockwise(p_1, p_2, p_3)
staticmethod
Determine if three points make a clockwise or counter-clockwise turn.
Parameters
p_1 : tuple First point to be used to calculate turn. p_2 : tuple Second point to be used to calculate turn. p_3 : tuple Third point to be used to calculate turn.
Returns
boolean Indicator of whether turn is clockwise.
Source code in topostats/grainstats.py
plot(edges, convex_hull=None, file_path=None)
staticmethod
Plot and save the coordinates of the edges in the grain and optionally the hull.
Parameters
edges : list A list of points to be plotted. convex_hull : list Optional argument. A list of points that form the convex hull. Will be plotted with the coordinates if provided. file_path : Path Path of the file to save the plot as.
Source code in topostats/grainstats.py
sort_points(points)
Sort points in counter-clockwise order of angle made with the starting point.
Parameters
points : list A python list of the coordinates to sort.
Returns
list Points (coordinates) sorted counter-clockwise.
Source code in topostats/grainstats.py
handler: python options: docstring_style: numpy rendering: show_signature_annotations: true