Filters Modules
Module for filtering 2D Numpy arrays.
Filters
Class for filtering scans.
Parameters
image : npt.NDArray The raw image from the Atomic Force Microscopy machine. filename : str The filename (used in logging only). pixel_to_nm_scaling : float Value for converting pixels to nanometers. row_alignment_quantile : float Quantile (0.0 to 1.0) to be used to determine the average background for the image below values may improve flattening of large features. threshold_method : str Method for thresholding, default 'otsu', valid options 'otsu', 'std_dev' and 'absolute'. otsu_threshold_multiplier : float Value for scaling the derived Otsu threshold. threshold_std_dev : dict If using the 'std_dev' threshold method. Dictionary that contains above and below threshold values for the number of standard deviations from the mean to threshold. threshold_absolute : dict If using the 'absolute' threshold method. Dictionary that contains above and below absolute threshold values for flattening. gaussian_size : float If using the 'absolute' threshold method. Dictionary that contains above and below absolute threshold values for flattening. gaussian_mode : str Method passed to 'skimage.filters.gaussian(mode = gaussian_mode)'. remove_scars : dict Dictionary containing configuration parameters for the scar removal function.
Source code in topostats/filters.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | |
__init__(image, filename, pixel_to_nm_scaling, row_alignment_quantile=0.5, threshold_method='otsu', otsu_threshold_multiplier=1.7, threshold_std_dev=None, threshold_absolute=None, gaussian_size=None, gaussian_mode='nearest', remove_scars=None)
Initialise the class.
Parameters
image : npt.NDArray The raw image from the Atomic Force Microscopy machine. filename : str The filename (used in logging only). pixel_to_nm_scaling : float Value for converting pixels to nanometers. row_alignment_quantile : float Quantile (0.0 to 1.0) to be used to determine the average background for the image below values may improve flattening of large features. threshold_method : str Method for thresholding, default 'otsu', valid options 'otsu', 'std_dev' and 'absolute'. otsu_threshold_multiplier : float Value for scaling the derived Otsu threshold. threshold_std_dev : dict If using the 'std_dev' threshold method. Dictionary that contains above and below threshold values for the number of standard deviations from the mean to threshold. threshold_absolute : dict If using the 'absolute' threshold method. Dictionary that contains above and below absolute threshold values for flattening. gaussian_size : float If using the 'absolute' threshold method. Dictionary that contains above and below absolute threshold values for flattening. gaussian_mode : str Method passed to 'skimage.filters.gaussian(mode = gaussian_mode)'. remove_scars : dict Dictionary containing configuration parameters for the scar removal function.
Source code in topostats/filters.py
average_background(image, mask=None)
Zero the background by subtracting the non-masked mean from all pixels.
Parameters
image : npt.NDArray Numpy array representing the image. mask : npt.NDArray Mask of the array, should have the same dimensions as image.
Returns
npt.NDArray Numpy array of image zero averaged.
Source code in topostats/filters.py
calc_diff(array)
staticmethod
Calculate the difference between the last and first rows of a 2-D array.
Parameters
array : npt.NDArray A Numpy array.
Returns
npt.NDArray An array of the difference between the last and first rows of an array.
Source code in topostats/filters.py
calc_gradient(array, shape)
Calculate the gradient of an array.
Parameters
array : npt.NDArray Array for gradient to be calculated. shape : int Shape of the array.
Returns
npt.NDArray Gradient across the array.
Source code in topostats/filters.py
filter_image()
Process a single image, filtering, finding grains and calculating their statistics.
Returns
None Does not return anything.
Examples
from topostats.io import LoadScan from topostats.topotracing import Filter, process_scan
filter = Filter(image=load_scan.image, ... pixel_to_nm_scaling=load_scan.pixel_to_nm_scaling, ... filename=load_scan.filename, ... threshold_method='otsu') filter.filter_image()
Source code in topostats/filters.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | |
gaussian_filter(image, **kwargs)
Apply Gaussian filter to an image.
Parameters
image : npt.NDArray Numpy array representing the image. **kwargs Keyword arguments passed on to the skimage.filters.gaussian() function.
Returns
npt.NDArray Numpy array that represent the image after Gaussian filtering.
Source code in topostats/filters.py
median_flatten(image, mask=None, row_alignment_quantile=0.5)
Flatten images using median differences.
Flatten the rows of an image, aligning the rows and centering the median around zero. When used with a mask, this has the effect of centering the background data on zero.
Note this function does not handle scars.
Parameters
image : npt.NDArray 2-D image of the data to align the rows of. mask : npt.NDArray Boolean array of points to mask (ignore). row_alignment_quantile : float Quantile (in the range 0.0 to 1.0) used for defining the average background.
Returns
npt.NDArray Copy of the input image with rows aligned.
Source code in topostats/filters.py
remove_nonlinear_polynomial(image, mask=None)
Fit and remove a "saddle" shaped nonlinear polynomial from the image.
"Saddles" with the form a + b * x * y - c * x - d * y from the supplied image. AFM images sometimes contain a "saddle" shape trend to their background, and so to remove them we fit a nonlinear polynomial of x and y and then subtract the fit from the image.
If these trends are not removed, then the image will not flatten properly and will leave opposite diagonal corners raised or lowered.
Parameters
image : npt.NDArray 2-D numpy height-map array of floats with a polynomial trend to remove. mask : npt.NDArray, optional 2-D Numpy boolean array used to mask any points in the image that are deemed not to be part of the height-map's background data.
Returns
npt.NDArray Image with the polynomial trend subtracted.
Source code in topostats/filters.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | |
remove_quadratic(image, mask=None)
Remove the quadratic bowing that can be seen in some large-scale AFM images.
Use a simple quadratic fit on the medians of the columns of the image and then subtracts the calculated quadratic from the columns.
Parameters
image : npt.NDArray 2-D image of the data to remove the quadratic from. mask : npt.NDArray Boolean array of points to mask (ignore).
Returns
npt.NDArray Image with the quadratic bowing removed.
Source code in topostats/filters.py
remove_tilt(image, mask=None)
Remove the planar tilt from an image (linear in 2D spaces).
Uses a linear fit of the medians of the rows and columns to determine the linear slants in x and y directions and then subtracts the fit from the columns.
Parameters
image : npt.NDArray 2-D image of the data to remove the planar tilt from. mask : npt.NDArray Boolean array of points to mask (ignore).
Returns
npt.NDArray Numpy array of image with tilt removed.
Source code in topostats/filters.py
handler: python options: docstring_style: numpy rendering: show_signature_annotations: true