Skip to content

Plottingfuncs Modules

Plotting data.

Images

Plots image arrays.

Parameters

data : npt.NDarray Numpy array to plot. output_dir : str | Path Output directory to save the file to. filename : str Filename to save image as. style : str | Path Filename of matplotlibrc parameters. pixel_to_nm_scaling : float The scaling factor showing the real length of 1 pixel in nanometers (nm). masked_array : npt.NDarray Optional mask array to overlay onto an image. plot_coords : npt.NDArray ??? Needs defining. title : str Title for plot. image_type : str The image data type, options are 'binary' or 'non-binary'. image_set : str The set of images to process, options are 'core' or 'all'. core_set : bool Flag to identify image as part of the core image set or not. pixel_interpolation : str, optional Interpolation to use (default is 'None'). cmap : str, optional Colour map to use (default 'nanoscope', 'afmhot' also available). mask_cmap : str Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast). region_properties : dict Dictionary of region properties, adds bounding boxes if specified. zrange : list Lower and upper bound to clip core images to. colorbar : bool Optionally add a colorbar to plots, default is False. axes : bool Optionally add/remove axes from the image. num_ticks : tuple[int | None] The number of x and y ticks to display on the iage. save : bool Whether to save the image. savefig_format : str, optional Format to save the image as. histogram_log_axis : bool Optionally use a loagrithmic y-axis for the histogram plots. histogram_bins : int, optional Number of bins for histograms to use. savefig_dpi : str | float, optional The resolution of the saved plot (default 'figure').

Source code in topostats/plottingfuncs.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
class Images:
    """
    Plots image arrays.

    Parameters
    ----------
    data : npt.NDarray
        Numpy array to plot.
    output_dir : str | Path
        Output directory to save the file to.
    filename : str
        Filename to save image as.
    style : str | Path
        Filename of matplotlibrc parameters.
    pixel_to_nm_scaling : float
        The scaling factor showing the real length of 1 pixel in nanometers (nm).
    masked_array : npt.NDarray
        Optional mask array to overlay onto an image.
    plot_coords : npt.NDArray
        ??? Needs defining.
    title : str
        Title for plot.
    image_type : str
        The image data type, options are 'binary' or 'non-binary'.
    image_set : str
        The set of images to process, options are 'core' or 'all'.
    core_set : bool
        Flag to identify image as part of the core image set or not.
    pixel_interpolation : str, optional
        Interpolation to use (default is 'None').
    cmap : str, optional
        Colour map to use (default 'nanoscope', 'afmhot' also available).
    mask_cmap : str
        Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast).
    region_properties : dict
        Dictionary of region properties, adds bounding boxes if specified.
    zrange : list
        Lower and upper bound to clip core images to.
    colorbar : bool
        Optionally add a colorbar to plots, default is False.
    axes : bool
        Optionally add/remove axes from the image.
    num_ticks : tuple[int | None]
        The number of x and y ticks to display on the iage.
    save : bool
        Whether to save the image.
    savefig_format : str, optional
        Format to save the image as.
    histogram_log_axis : bool
        Optionally use a loagrithmic y-axis for the histogram plots.
    histogram_bins : int, optional
        Number of bins for histograms to use.
    savefig_dpi : str | float, optional
        The resolution of the saved plot (default 'figure').
    """

    def __init__(
        self,
        data: npt.NDarray,
        output_dir: str | Path,
        filename: str,
        style: str | Path = None,
        pixel_to_nm_scaling: float = 1.0,
        masked_array: npt.NDarray = None,
        plot_coords: npt.NDArray = None,
        title: str = None,
        image_type: str = "non-binary",
        image_set: str = "core",
        core_set: bool = False,
        pixel_interpolation: str | None = None,
        cmap: str | None = None,
        mask_cmap: str = "jet_r",
        region_properties: dict = None,
        zrange: list = None,
        colorbar: bool = True,
        axes: bool = True,
        num_ticks: tuple[int | None] = (None, None),
        save: bool = True,
        savefig_format: str | None = None,
        histogram_log_axis: bool = True,
        histogram_bins: int | None = None,
        savefig_dpi: str | float | None = None,
    ) -> None:
        """
        Initialise the class.

        There are two key parameters that ensure whether an image is plotted that are passed in from the updated
        plotting dictionary. These are the `image_set` which defines whether to plot 'all' images or just the `core`
        set. There is then the 'core_set' which defines whether an individual images belongs to the 'core_set' or
        not. If it doesn't then it is not plotted when `image_set == "core"`.

        Parameters
        ----------
        data : npt.NDarray
            Numpy array to plot.
        output_dir : str | Path
            Output directory to save the file to.
        filename : str
            Filename to save image as.
        style : str | Path
            Filename of matplotlibrc parameters.
        pixel_to_nm_scaling : float
            The scaling factor showing the real length of 1 pixel in nanometers (nm).
        masked_array : npt.NDarray
            Optional mask array to overlay onto an image.
        plot_coords : npt.NDArray
            ??? Needs defining.
        title : str
            Title for plot.
        image_type : str
            The image data type, options are 'binary' or 'non-binary'.
        image_set : str
            The set of images to process, options are 'core' or 'all'.
        core_set : bool
            Flag to identify image as part of the core image set or not.
        pixel_interpolation : str, optional
            Interpolation to use (default is 'None').
        cmap : str, optional
            Colour map to use (default 'nanoscope', 'afmhot' also available).
        mask_cmap : str
            Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast).
        region_properties : dict
            Dictionary of region properties, adds bounding boxes if specified.
        zrange : list
            Lower and upper bound to clip core images to.
        colorbar : bool
            Optionally add a colorbar to plots, default is False.
        axes : bool
            Optionally add/remove axes from the image.
        num_ticks : tuple[int | None]
            The number of x and y ticks to display on the iage.
        save : bool
            Whether to save the image.
        savefig_format : str, optional
            Format to save the image as.
        histogram_log_axis : bool
            Optionally use a loagrithmic y-axis for the histogram plots.
        histogram_bins : int, optional
            Number of bins for histograms to use.
        savefig_dpi : str | float, optional
            The resolution of the saved plot (default 'figure').
        """
        if style is None:
            style = "topostats.mplstyle"
        load_mplstyle(style)
        if zrange is None:
            zrange = [None, None]
        self.data = data
        self.output_dir = Path(output_dir)
        self.filename = filename
        self.pixel_to_nm_scaling = pixel_to_nm_scaling
        self.masked_array = masked_array
        self.plot_coords = plot_coords
        self.title = title
        self.image_type = image_type
        self.image_set = image_set
        self.core_set = core_set
        self.interpolation = mpl.rcParams["image.interpolation"] if pixel_interpolation is None else pixel_interpolation
        cmap = mpl.rcParams["image.cmap"] if cmap is None else cmap
        self.cmap = Colormap(cmap).get_cmap()
        self.mask_cmap = Colormap(mask_cmap).get_cmap()
        self.region_properties = region_properties
        self.zrange = zrange
        self.colorbar = colorbar
        self.axes = axes
        self.num_ticks = num_ticks
        self.save = save
        self.savefig_format = mpl.rcParams["savefig.format"] if savefig_format is None else savefig_format
        self.histogram_log_axis = histogram_log_axis
        self.histogram_bins = mpl.rcParams["hist.bins"] if histogram_bins is None else histogram_bins
        self.savefig_dpi = mpl.rcParams["savefig.dpi"] if savefig_dpi is None else savefig_dpi

    def plot_histogram_and_save(self) -> tuple | None:
        """
        Plot and save a histogram of the height map.

        Returns
        -------
        tuple | None
            Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
        """
        if self.image_set == "all":
            fig, ax = plt.subplots(1, 1)

            ax.hist(self.data.flatten().astype(float), bins=self.histogram_bins, log=self.histogram_log_axis)
            ax.set_xlabel("pixel height")
            if self.histogram_log_axis:
                ax.set_ylabel("frequency in image (log)")
            else:
                ax.set_ylabel("frequency in image")
            plt.title(self.title)
            plt.savefig(
                (self.output_dir / f"{self.filename}_histogram.{self.savefig_format}"),
                bbox_inches="tight",
                pad_inches=0.5,
                dpi=self.savefig_dpi,
            )
            plt.close()

            return fig, ax
        return None

    def plot_curvatures(
        self,
        image: npt.NDArray,
        cropped_images: dict,
        grains_curvature_stats_dict: dict,
        all_grain_smoothed_data: dict,
        colourmap_normalisation_bounds: tuple[float, float],
    ) -> tuple[plt.Figure | None, plt.Axes | None]:
        """
        Plot curvature intensity and defects of grains in an image.

        Parameters
        ----------
        image : npt.NDArray
            Image to plot.
        cropped_images : dict
            Dictionary containing cropped images of grains and the bounding boxes and padding.
        grains_curvature_stats_dict : dict
            Dictionary of grain curvature statistics.
        all_grain_smoothed_data : dict
            Dictionary containing smoothed grain traces.
        colourmap_normalisation_bounds : tuple[float, float]
            Tuple of the colour map normalisation bounds.

        Returns
        -------
        tuple[plt.Figure | None, plt.Axes | None]
            Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
        """
        fig, ax = None, None

        # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set
        if self.image_set == "all" or self.core_set:
            # Get the shape of the image

            shape = image.shape
            fig, ax = plt.subplots(1, 1)
            ax.imshow(
                image,
                extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
                interpolation=self.interpolation,
                cmap=self.cmap,
                vmin=self.zrange[0],
                vmax=self.zrange[1],
            )

            # For each grain, plot the points with the colour determined by the curvature value
            # Iterate over the grains
            for (_, grain_data_curvature), (_, grain_data_smoothed_trace), (_, grain_image_container) in zip(
                grains_curvature_stats_dict.items(), all_grain_smoothed_data.items(), cropped_images.items()
            ):

                # Get the coordinate for the grain to accurately position the points
                min_row = grain_image_container["bbox"][0]
                min_col = grain_image_container["bbox"][1]

                pad_width = grain_image_container["pad_width"]

                # Iterate over molecules
                for (_, molecule_data_curvature), (
                    _,
                    molecule_data_smoothed_trace,
                ) in zip(grain_data_curvature.items(), grain_data_smoothed_trace.items()):

                    # Normalise the curvature values to the colourmap bounds
                    normalised_curvature = np.array(molecule_data_curvature)
                    normalised_curvature = normalised_curvature - colourmap_normalisation_bounds[0]
                    normalised_curvature = normalised_curvature / (
                        colourmap_normalisation_bounds[1] - colourmap_normalisation_bounds[0]
                    )

                    molecule_trace_coords = molecule_data_smoothed_trace["spline_coords"]
                    # pylint cannot see that mpl.cm.viridis is a valid attribute
                    # pylint: disable=no-member
                    cmap = mpl.cm.coolwarm
                    for index, point in enumerate(molecule_trace_coords):
                        color = cmap(normalised_curvature[index])
                        if index > 0:
                            previous_point = molecule_trace_coords[index - 1]
                            ax.plot(
                                [
                                    (min_col - pad_width + previous_point[1]) * self.pixel_to_nm_scaling,
                                    (min_col - pad_width + point[1]) * self.pixel_to_nm_scaling,
                                ],
                                [
                                    (image.shape[0] - (min_row - pad_width + previous_point[0]))
                                    * self.pixel_to_nm_scaling,
                                    (image.shape[0] - (min_row - pad_width + point[0])) * self.pixel_to_nm_scaling,
                                ],
                                color=color,
                                linewidth=1,
                            )

            # save the figure
            plt.title(self.title)
            plt.xlabel("Nanometres")
            plt.ylabel("Nanometres")
            set_n_ticks(ax, self.num_ticks)
            plt.axis(self.axes)
            fig.tight_layout()
            plt.savefig(
                (self.output_dir / f"{self.filename}.{self.savefig_format}"),
                bbox_inches="tight",
                pad_inches=0,
                dpi=self.savefig_dpi,
            )
            plt.close()

        return fig, ax

    def plot_curvatures_individual_grains(
        self,
        cropped_images: dict,
        grains_curvature_stats_dict: dict,
        all_grains_smoothed_data: dict,
        colourmap_normalisation_bounds: tuple[float, float],
    ) -> None:
        """
        Plot curvature intensity and defects of individual grains.

        Parameters
        ----------
        cropped_images : dict
            Dictionary of cropped images.
        grains_curvature_stats_dict : dict
            Dictionary of grain curvature statistics.
        all_grains_smoothed_data : dict
            Dictionary containing smoothed grain traces.
        colourmap_normalisation_bounds : tuple
            Tuple of the colour map normalisation bounds.
        """
        fig, ax = None, None
        # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set
        if self.image_set == "all" or self.core_set:

            # Iterate over grains
            for (
                (grain_index, grain_data_curvature),
                (_, grain_data_smoothed_trace),
                (_, grain_image_container),
            ) in zip(grains_curvature_stats_dict.items(), all_grains_smoothed_data.items(), cropped_images.items()):
                grain_image = grain_image_container["original_image"]
                shape = grain_image.shape
                fig, ax = plt.subplots(1, 1)
                ax.imshow(
                    grain_image,
                    extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
                    interpolation=self.interpolation,
                    cmap=self.cmap,
                    vmin=self.zrange[0],
                    vmax=self.zrange[1],
                )

                # Iterate over molecules
                for (_, molecule_data_curvature), (_, molecule_data_smoothed_trace) in zip(
                    grain_data_curvature.items(), grain_data_smoothed_trace.items()
                ):

                    molecule_trace_coords = molecule_data_smoothed_trace["spline_coords"]

                    # Normalise the curvature values to the colourmap bounds
                    normalised_curvature = np.array(molecule_data_curvature)
                    normalised_curvature = normalised_curvature - colourmap_normalisation_bounds[0]
                    normalised_curvature = normalised_curvature / (
                        colourmap_normalisation_bounds[1] - colourmap_normalisation_bounds[0]
                    )

                    # pylint cannot see that mpl.cm.viridis is a valid attribute
                    # pylint: disable=no-member
                    cmap = mpl.cm.coolwarm

                    for index, point in enumerate(molecule_trace_coords):

                        colour = cmap(normalised_curvature[index])
                        if index > 0:
                            previous_point = molecule_trace_coords[index - 1]
                            ax.plot(
                                [
                                    previous_point[1] * self.pixel_to_nm_scaling,
                                    point[1] * self.pixel_to_nm_scaling,
                                ],
                                [
                                    (shape[0] - previous_point[0]) * self.pixel_to_nm_scaling,
                                    (shape[0] - point[0]) * self.pixel_to_nm_scaling,
                                ],
                                color=colour,
                                linewidth=3,
                            )

                plt.title(self.title)
                plt.xlabel("Nanometres")
                plt.ylabel("Nanometres")
                set_n_ticks(ax, self.num_ticks)
                plt.axis(self.axes)
                fig.tight_layout()
                # plt.savefig(f"./grain_{grain_index}_curvature.png")
                fig.savefig(
                    (self.output_dir / f"{grain_index}_curvature.{self.savefig_format}"),
                    bbox_inches="tight",
                    pad_inches=0,
                    dpi=self.savefig_dpi,
                )
                plt.close()

            LOGGER.debug(
                f"[{self.filename}] : Image saved to : {str(self.output_dir / self.filename)}.{self.savefig_format}"
                f" | DPI: {self.savefig_dpi}"
            )

    def plot_and_save(self):
        """
        Plot and save the image.

        Returns
        -------
        tuple
            Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
        """
        fig, ax = None, None
        if self.save:
            # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set
            if self.image_set == "all" or self.core_set:
                fig, ax = self.save_figure()
                LOGGER.debug(
                    f"[{self.filename}] : Image saved to : {str(self.output_dir / self.filename)}.{self.savefig_format}"
                    f" | DPI: {self.savefig_dpi}"
                )
                plt.close()
                return fig, ax
        return fig, ax

    def save_figure(self):
        """
        Save figures as plt.savefig objects.

        Returns
        -------
        tuple
            Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
        """
        fig, ax = plt.subplots(1, 1)
        shape = self.data.shape
        if isinstance(self.data, np.ndarray):
            im = ax.imshow(
                self.data,
                extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
                interpolation=self.interpolation,
                cmap=self.cmap,
                vmin=self.zrange[0],
                vmax=self.zrange[1],
            )
            if isinstance(self.masked_array, np.ndarray):
                mask = np.ma.masked_where(self.masked_array == 0, self.masked_array)
                ax.imshow(
                    mask,
                    cmap=self.mask_cmap,
                    extent=(
                        0,
                        shape[1] * self.pixel_to_nm_scaling,
                        0,
                        shape[0] * self.pixel_to_nm_scaling,
                    ),
                    interpolation=self.interpolation,
                    alpha=0.7,
                )
                patch = [Patch(color=self.mask_cmap(1, 0.7), label="Mask")]
                plt.legend(handles=patch, loc="upper right", bbox_to_anchor=(1.02, 1.09))
            # if coordinates are provided (such as in splines, plot those)
            elif self.plot_coords is not None:
                for grain_coords in self.plot_coords:
                    ax.plot(
                        grain_coords[:, 1] * self.pixel_to_nm_scaling,
                        (shape[0] - grain_coords[:, 0]) * self.pixel_to_nm_scaling,
                        c="c",
                        linewidth=1,
                    )

            plt.title(self.title)
            plt.xlabel("Nanometres")
            plt.ylabel("Nanometres")
            set_n_ticks(ax, self.num_ticks)
            plt.axis(self.axes)
            if self.colorbar and self.image_type == "non-binary":
                divider = make_axes_locatable(ax)
                cax = divider.append_axes("right", size="5%", pad=0.05)
                plt.colorbar(im, cax=cax, label="Height (Nanometres)")
            if self.region_properties:
                fig, ax = add_bounding_boxes_to_plot(fig, ax, shape, self.region_properties, self.pixel_to_nm_scaling)
            if not self.axes and not self.colorbar:
                plt.title("")
                fig.frameon = False
                plt.box(False)
                plt.tight_layout()
                plt.savefig(
                    (self.output_dir / f"{self.filename}.{self.savefig_format}"),
                    bbox_inches="tight",
                    pad_inches=0,
                    dpi=self.savefig_dpi,
                )
            else:
                plt.savefig((self.output_dir / f"{self.filename}.{self.savefig_format}"), dpi=self.savefig_dpi)
        else:
            plt.xlabel("Nanometres")
            plt.ylabel("Nanometres")
            self.data.show(
                ax=ax,
                extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
                interpolation=self.interpolation,
                cmap=self.cmap,
            )
        plt.close()
        return fig, ax

__init__(data, output_dir, filename, style=None, pixel_to_nm_scaling=1.0, masked_array=None, plot_coords=None, title=None, image_type='non-binary', image_set='core', core_set=False, pixel_interpolation=None, cmap=None, mask_cmap='jet_r', region_properties=None, zrange=None, colorbar=True, axes=True, num_ticks=(None, None), save=True, savefig_format=None, histogram_log_axis=True, histogram_bins=None, savefig_dpi=None)

Initialise the class.

There are two key parameters that ensure whether an image is plotted that are passed in from the updated plotting dictionary. These are the image_set which defines whether to plot 'all' images or just the core set. There is then the 'core_set' which defines whether an individual images belongs to the 'core_set' or not. If it doesn't then it is not plotted when image_set == "core".

Parameters

data : npt.NDarray Numpy array to plot. output_dir : str | Path Output directory to save the file to. filename : str Filename to save image as. style : str | Path Filename of matplotlibrc parameters. pixel_to_nm_scaling : float The scaling factor showing the real length of 1 pixel in nanometers (nm). masked_array : npt.NDarray Optional mask array to overlay onto an image. plot_coords : npt.NDArray ??? Needs defining. title : str Title for plot. image_type : str The image data type, options are 'binary' or 'non-binary'. image_set : str The set of images to process, options are 'core' or 'all'. core_set : bool Flag to identify image as part of the core image set or not. pixel_interpolation : str, optional Interpolation to use (default is 'None'). cmap : str, optional Colour map to use (default 'nanoscope', 'afmhot' also available). mask_cmap : str Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast). region_properties : dict Dictionary of region properties, adds bounding boxes if specified. zrange : list Lower and upper bound to clip core images to. colorbar : bool Optionally add a colorbar to plots, default is False. axes : bool Optionally add/remove axes from the image. num_ticks : tuple[int | None] The number of x and y ticks to display on the iage. save : bool Whether to save the image. savefig_format : str, optional Format to save the image as. histogram_log_axis : bool Optionally use a loagrithmic y-axis for the histogram plots. histogram_bins : int, optional Number of bins for histograms to use. savefig_dpi : str | float, optional The resolution of the saved plot (default 'figure').

Source code in topostats/plottingfuncs.py
def __init__(
    self,
    data: npt.NDarray,
    output_dir: str | Path,
    filename: str,
    style: str | Path = None,
    pixel_to_nm_scaling: float = 1.0,
    masked_array: npt.NDarray = None,
    plot_coords: npt.NDArray = None,
    title: str = None,
    image_type: str = "non-binary",
    image_set: str = "core",
    core_set: bool = False,
    pixel_interpolation: str | None = None,
    cmap: str | None = None,
    mask_cmap: str = "jet_r",
    region_properties: dict = None,
    zrange: list = None,
    colorbar: bool = True,
    axes: bool = True,
    num_ticks: tuple[int | None] = (None, None),
    save: bool = True,
    savefig_format: str | None = None,
    histogram_log_axis: bool = True,
    histogram_bins: int | None = None,
    savefig_dpi: str | float | None = None,
) -> None:
    """
    Initialise the class.

    There are two key parameters that ensure whether an image is plotted that are passed in from the updated
    plotting dictionary. These are the `image_set` which defines whether to plot 'all' images or just the `core`
    set. There is then the 'core_set' which defines whether an individual images belongs to the 'core_set' or
    not. If it doesn't then it is not plotted when `image_set == "core"`.

    Parameters
    ----------
    data : npt.NDarray
        Numpy array to plot.
    output_dir : str | Path
        Output directory to save the file to.
    filename : str
        Filename to save image as.
    style : str | Path
        Filename of matplotlibrc parameters.
    pixel_to_nm_scaling : float
        The scaling factor showing the real length of 1 pixel in nanometers (nm).
    masked_array : npt.NDarray
        Optional mask array to overlay onto an image.
    plot_coords : npt.NDArray
        ??? Needs defining.
    title : str
        Title for plot.
    image_type : str
        The image data type, options are 'binary' or 'non-binary'.
    image_set : str
        The set of images to process, options are 'core' or 'all'.
    core_set : bool
        Flag to identify image as part of the core image set or not.
    pixel_interpolation : str, optional
        Interpolation to use (default is 'None').
    cmap : str, optional
        Colour map to use (default 'nanoscope', 'afmhot' also available).
    mask_cmap : str
        Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast).
    region_properties : dict
        Dictionary of region properties, adds bounding boxes if specified.
    zrange : list
        Lower and upper bound to clip core images to.
    colorbar : bool
        Optionally add a colorbar to plots, default is False.
    axes : bool
        Optionally add/remove axes from the image.
    num_ticks : tuple[int | None]
        The number of x and y ticks to display on the iage.
    save : bool
        Whether to save the image.
    savefig_format : str, optional
        Format to save the image as.
    histogram_log_axis : bool
        Optionally use a loagrithmic y-axis for the histogram plots.
    histogram_bins : int, optional
        Number of bins for histograms to use.
    savefig_dpi : str | float, optional
        The resolution of the saved plot (default 'figure').
    """
    if style is None:
        style = "topostats.mplstyle"
    load_mplstyle(style)
    if zrange is None:
        zrange = [None, None]
    self.data = data
    self.output_dir = Path(output_dir)
    self.filename = filename
    self.pixel_to_nm_scaling = pixel_to_nm_scaling
    self.masked_array = masked_array
    self.plot_coords = plot_coords
    self.title = title
    self.image_type = image_type
    self.image_set = image_set
    self.core_set = core_set
    self.interpolation = mpl.rcParams["image.interpolation"] if pixel_interpolation is None else pixel_interpolation
    cmap = mpl.rcParams["image.cmap"] if cmap is None else cmap
    self.cmap = Colormap(cmap).get_cmap()
    self.mask_cmap = Colormap(mask_cmap).get_cmap()
    self.region_properties = region_properties
    self.zrange = zrange
    self.colorbar = colorbar
    self.axes = axes
    self.num_ticks = num_ticks
    self.save = save
    self.savefig_format = mpl.rcParams["savefig.format"] if savefig_format is None else savefig_format
    self.histogram_log_axis = histogram_log_axis
    self.histogram_bins = mpl.rcParams["hist.bins"] if histogram_bins is None else histogram_bins
    self.savefig_dpi = mpl.rcParams["savefig.dpi"] if savefig_dpi is None else savefig_dpi

plot_and_save()

Plot and save the image.

Returns

tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.

Source code in topostats/plottingfuncs.py
def plot_and_save(self):
    """
    Plot and save the image.

    Returns
    -------
    tuple
        Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
    """
    fig, ax = None, None
    if self.save:
        # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set
        if self.image_set == "all" or self.core_set:
            fig, ax = self.save_figure()
            LOGGER.debug(
                f"[{self.filename}] : Image saved to : {str(self.output_dir / self.filename)}.{self.savefig_format}"
                f" | DPI: {self.savefig_dpi}"
            )
            plt.close()
            return fig, ax
    return fig, ax

plot_curvatures(image, cropped_images, grains_curvature_stats_dict, all_grain_smoothed_data, colourmap_normalisation_bounds)

Plot curvature intensity and defects of grains in an image.

Parameters

image : npt.NDArray Image to plot. cropped_images : dict Dictionary containing cropped images of grains and the bounding boxes and padding. grains_curvature_stats_dict : dict Dictionary of grain curvature statistics. all_grain_smoothed_data : dict Dictionary containing smoothed grain traces. colourmap_normalisation_bounds : tuple[float, float] Tuple of the colour map normalisation bounds.

Returns

tuple[plt.Figure | None, plt.Axes | None] Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.

Source code in topostats/plottingfuncs.py
def plot_curvatures(
    self,
    image: npt.NDArray,
    cropped_images: dict,
    grains_curvature_stats_dict: dict,
    all_grain_smoothed_data: dict,
    colourmap_normalisation_bounds: tuple[float, float],
) -> tuple[plt.Figure | None, plt.Axes | None]:
    """
    Plot curvature intensity and defects of grains in an image.

    Parameters
    ----------
    image : npt.NDArray
        Image to plot.
    cropped_images : dict
        Dictionary containing cropped images of grains and the bounding boxes and padding.
    grains_curvature_stats_dict : dict
        Dictionary of grain curvature statistics.
    all_grain_smoothed_data : dict
        Dictionary containing smoothed grain traces.
    colourmap_normalisation_bounds : tuple[float, float]
        Tuple of the colour map normalisation bounds.

    Returns
    -------
    tuple[plt.Figure | None, plt.Axes | None]
        Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
    """
    fig, ax = None, None

    # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set
    if self.image_set == "all" or self.core_set:
        # Get the shape of the image

        shape = image.shape
        fig, ax = plt.subplots(1, 1)
        ax.imshow(
            image,
            extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
            interpolation=self.interpolation,
            cmap=self.cmap,
            vmin=self.zrange[0],
            vmax=self.zrange[1],
        )

        # For each grain, plot the points with the colour determined by the curvature value
        # Iterate over the grains
        for (_, grain_data_curvature), (_, grain_data_smoothed_trace), (_, grain_image_container) in zip(
            grains_curvature_stats_dict.items(), all_grain_smoothed_data.items(), cropped_images.items()
        ):

            # Get the coordinate for the grain to accurately position the points
            min_row = grain_image_container["bbox"][0]
            min_col = grain_image_container["bbox"][1]

            pad_width = grain_image_container["pad_width"]

            # Iterate over molecules
            for (_, molecule_data_curvature), (
                _,
                molecule_data_smoothed_trace,
            ) in zip(grain_data_curvature.items(), grain_data_smoothed_trace.items()):

                # Normalise the curvature values to the colourmap bounds
                normalised_curvature = np.array(molecule_data_curvature)
                normalised_curvature = normalised_curvature - colourmap_normalisation_bounds[0]
                normalised_curvature = normalised_curvature / (
                    colourmap_normalisation_bounds[1] - colourmap_normalisation_bounds[0]
                )

                molecule_trace_coords = molecule_data_smoothed_trace["spline_coords"]
                # pylint cannot see that mpl.cm.viridis is a valid attribute
                # pylint: disable=no-member
                cmap = mpl.cm.coolwarm
                for index, point in enumerate(molecule_trace_coords):
                    color = cmap(normalised_curvature[index])
                    if index > 0:
                        previous_point = molecule_trace_coords[index - 1]
                        ax.plot(
                            [
                                (min_col - pad_width + previous_point[1]) * self.pixel_to_nm_scaling,
                                (min_col - pad_width + point[1]) * self.pixel_to_nm_scaling,
                            ],
                            [
                                (image.shape[0] - (min_row - pad_width + previous_point[0]))
                                * self.pixel_to_nm_scaling,
                                (image.shape[0] - (min_row - pad_width + point[0])) * self.pixel_to_nm_scaling,
                            ],
                            color=color,
                            linewidth=1,
                        )

        # save the figure
        plt.title(self.title)
        plt.xlabel("Nanometres")
        plt.ylabel("Nanometres")
        set_n_ticks(ax, self.num_ticks)
        plt.axis(self.axes)
        fig.tight_layout()
        plt.savefig(
            (self.output_dir / f"{self.filename}.{self.savefig_format}"),
            bbox_inches="tight",
            pad_inches=0,
            dpi=self.savefig_dpi,
        )
        plt.close()

    return fig, ax

plot_curvatures_individual_grains(cropped_images, grains_curvature_stats_dict, all_grains_smoothed_data, colourmap_normalisation_bounds)

Plot curvature intensity and defects of individual grains.

Parameters

cropped_images : dict Dictionary of cropped images. grains_curvature_stats_dict : dict Dictionary of grain curvature statistics. all_grains_smoothed_data : dict Dictionary containing smoothed grain traces. colourmap_normalisation_bounds : tuple Tuple of the colour map normalisation bounds.

Source code in topostats/plottingfuncs.py
def plot_curvatures_individual_grains(
    self,
    cropped_images: dict,
    grains_curvature_stats_dict: dict,
    all_grains_smoothed_data: dict,
    colourmap_normalisation_bounds: tuple[float, float],
) -> None:
    """
    Plot curvature intensity and defects of individual grains.

    Parameters
    ----------
    cropped_images : dict
        Dictionary of cropped images.
    grains_curvature_stats_dict : dict
        Dictionary of grain curvature statistics.
    all_grains_smoothed_data : dict
        Dictionary containing smoothed grain traces.
    colourmap_normalisation_bounds : tuple
        Tuple of the colour map normalisation bounds.
    """
    fig, ax = None, None
    # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set
    if self.image_set == "all" or self.core_set:

        # Iterate over grains
        for (
            (grain_index, grain_data_curvature),
            (_, grain_data_smoothed_trace),
            (_, grain_image_container),
        ) in zip(grains_curvature_stats_dict.items(), all_grains_smoothed_data.items(), cropped_images.items()):
            grain_image = grain_image_container["original_image"]
            shape = grain_image.shape
            fig, ax = plt.subplots(1, 1)
            ax.imshow(
                grain_image,
                extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
                interpolation=self.interpolation,
                cmap=self.cmap,
                vmin=self.zrange[0],
                vmax=self.zrange[1],
            )

            # Iterate over molecules
            for (_, molecule_data_curvature), (_, molecule_data_smoothed_trace) in zip(
                grain_data_curvature.items(), grain_data_smoothed_trace.items()
            ):

                molecule_trace_coords = molecule_data_smoothed_trace["spline_coords"]

                # Normalise the curvature values to the colourmap bounds
                normalised_curvature = np.array(molecule_data_curvature)
                normalised_curvature = normalised_curvature - colourmap_normalisation_bounds[0]
                normalised_curvature = normalised_curvature / (
                    colourmap_normalisation_bounds[1] - colourmap_normalisation_bounds[0]
                )

                # pylint cannot see that mpl.cm.viridis is a valid attribute
                # pylint: disable=no-member
                cmap = mpl.cm.coolwarm

                for index, point in enumerate(molecule_trace_coords):

                    colour = cmap(normalised_curvature[index])
                    if index > 0:
                        previous_point = molecule_trace_coords[index - 1]
                        ax.plot(
                            [
                                previous_point[1] * self.pixel_to_nm_scaling,
                                point[1] * self.pixel_to_nm_scaling,
                            ],
                            [
                                (shape[0] - previous_point[0]) * self.pixel_to_nm_scaling,
                                (shape[0] - point[0]) * self.pixel_to_nm_scaling,
                            ],
                            color=colour,
                            linewidth=3,
                        )

            plt.title(self.title)
            plt.xlabel("Nanometres")
            plt.ylabel("Nanometres")
            set_n_ticks(ax, self.num_ticks)
            plt.axis(self.axes)
            fig.tight_layout()
            # plt.savefig(f"./grain_{grain_index}_curvature.png")
            fig.savefig(
                (self.output_dir / f"{grain_index}_curvature.{self.savefig_format}"),
                bbox_inches="tight",
                pad_inches=0,
                dpi=self.savefig_dpi,
            )
            plt.close()

        LOGGER.debug(
            f"[{self.filename}] : Image saved to : {str(self.output_dir / self.filename)}.{self.savefig_format}"
            f" | DPI: {self.savefig_dpi}"
        )

plot_histogram_and_save()

Plot and save a histogram of the height map.

Returns

tuple | None Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.

Source code in topostats/plottingfuncs.py
def plot_histogram_and_save(self) -> tuple | None:
    """
    Plot and save a histogram of the height map.

    Returns
    -------
    tuple | None
        Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
    """
    if self.image_set == "all":
        fig, ax = plt.subplots(1, 1)

        ax.hist(self.data.flatten().astype(float), bins=self.histogram_bins, log=self.histogram_log_axis)
        ax.set_xlabel("pixel height")
        if self.histogram_log_axis:
            ax.set_ylabel("frequency in image (log)")
        else:
            ax.set_ylabel("frequency in image")
        plt.title(self.title)
        plt.savefig(
            (self.output_dir / f"{self.filename}_histogram.{self.savefig_format}"),
            bbox_inches="tight",
            pad_inches=0.5,
            dpi=self.savefig_dpi,
        )
        plt.close()

        return fig, ax
    return None

save_figure()

Save figures as plt.savefig objects.

Returns

tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.

Source code in topostats/plottingfuncs.py
def save_figure(self):
    """
    Save figures as plt.savefig objects.

    Returns
    -------
    tuple
        Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
    """
    fig, ax = plt.subplots(1, 1)
    shape = self.data.shape
    if isinstance(self.data, np.ndarray):
        im = ax.imshow(
            self.data,
            extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
            interpolation=self.interpolation,
            cmap=self.cmap,
            vmin=self.zrange[0],
            vmax=self.zrange[1],
        )
        if isinstance(self.masked_array, np.ndarray):
            mask = np.ma.masked_where(self.masked_array == 0, self.masked_array)
            ax.imshow(
                mask,
                cmap=self.mask_cmap,
                extent=(
                    0,
                    shape[1] * self.pixel_to_nm_scaling,
                    0,
                    shape[0] * self.pixel_to_nm_scaling,
                ),
                interpolation=self.interpolation,
                alpha=0.7,
            )
            patch = [Patch(color=self.mask_cmap(1, 0.7), label="Mask")]
            plt.legend(handles=patch, loc="upper right", bbox_to_anchor=(1.02, 1.09))
        # if coordinates are provided (such as in splines, plot those)
        elif self.plot_coords is not None:
            for grain_coords in self.plot_coords:
                ax.plot(
                    grain_coords[:, 1] * self.pixel_to_nm_scaling,
                    (shape[0] - grain_coords[:, 0]) * self.pixel_to_nm_scaling,
                    c="c",
                    linewidth=1,
                )

        plt.title(self.title)
        plt.xlabel("Nanometres")
        plt.ylabel("Nanometres")
        set_n_ticks(ax, self.num_ticks)
        plt.axis(self.axes)
        if self.colorbar and self.image_type == "non-binary":
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)
            plt.colorbar(im, cax=cax, label="Height (Nanometres)")
        if self.region_properties:
            fig, ax = add_bounding_boxes_to_plot(fig, ax, shape, self.region_properties, self.pixel_to_nm_scaling)
        if not self.axes and not self.colorbar:
            plt.title("")
            fig.frameon = False
            plt.box(False)
            plt.tight_layout()
            plt.savefig(
                (self.output_dir / f"{self.filename}.{self.savefig_format}"),
                bbox_inches="tight",
                pad_inches=0,
                dpi=self.savefig_dpi,
            )
        else:
            plt.savefig((self.output_dir / f"{self.filename}.{self.savefig_format}"), dpi=self.savefig_dpi)
    else:
        plt.xlabel("Nanometres")
        plt.ylabel("Nanometres")
        self.data.show(
            ax=ax,
            extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling),
            interpolation=self.interpolation,
            cmap=self.cmap,
        )
    plt.close()
    return fig, ax

add_bounding_boxes_to_plot(fig, ax, shape, region_properties, pixel_to_nm_scaling)

Add the bounding boxes to a plot.

Parameters

fig : plt.figure.Figure Matplotlib.pyplot figure object. ax : plt.axes._subplots.AxesSubplot Matplotlib.pyplot axes object. shape : tuple Tuple of the image-to-be-plot's shape. region_properties : list Region properties to add bounding boxes from. pixel_to_nm_scaling : float The scaling factor from px to nm.

Returns

tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.

Source code in topostats/plottingfuncs.py
def add_bounding_boxes_to_plot(fig, ax, shape: tuple, region_properties: list, pixel_to_nm_scaling: float) -> tuple:
    """
    Add the bounding boxes to a plot.

    Parameters
    ----------
    fig : plt.figure.Figure
        Matplotlib.pyplot figure object.
    ax : plt.axes._subplots.AxesSubplot
        Matplotlib.pyplot axes object.
    shape : tuple
        Tuple of the image-to-be-plot's shape.
    region_properties : list
        Region properties to add bounding boxes from.
    pixel_to_nm_scaling : float
        The scaling factor from px to nm.

    Returns
    -------
    tuple
        Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
    """
    for region in region_properties:
        min_y, min_x, max_y, max_x = (x * pixel_to_nm_scaling for x in region.bbox)
        # Correct y-axis
        min_y = (shape[0] * pixel_to_nm_scaling) - min_y
        max_y = (shape[0] * pixel_to_nm_scaling) - max_y
        rectangle = Rectangle((min_x, min_y), max_x - min_x, max_y - min_y, fill=False, edgecolor="white", linewidth=2)
        ax.add_patch(rectangle)
    return fig, ax

add_pixel_to_nm_to_plotting_config(plotting_config, pixel_to_nm_scaling)

Add the pixel to nanometre scaling factor to plotting configs.

Ensures plots are in nanometres and not pixels.

Parameters

plotting_config : dict TopoStats plotting configuration dictionary. pixel_to_nm_scaling : float Pixel to nanometre scaling factor for the image.

Returns

dict Updated plotting config with the pixel to nanometre scaling factor applied to all the image configurations.

Source code in topostats/plottingfuncs.py
def add_pixel_to_nm_to_plotting_config(plotting_config: dict, pixel_to_nm_scaling: float) -> dict:
    """
    Add the pixel to nanometre scaling factor to plotting configs.

    Ensures plots are in nanometres and not pixels.

    Parameters
    ----------
    plotting_config : dict
        TopoStats plotting configuration dictionary.
    pixel_to_nm_scaling : float
        Pixel to nanometre scaling factor for the image.

    Returns
    -------
    dict
        Updated plotting config with the pixel to nanometre scaling factor applied to all the image configurations.
    """
    # Update PLOT_DICT with pixel_to_nm_scaling (can't add _output_dir since it changes)
    plot_opts = {"pixel_to_nm_scaling": pixel_to_nm_scaling}
    for image, options in plotting_config["plot_dict"].items():
        plotting_config["plot_dict"][image] = {**options, **plot_opts}
    return plotting_config

dilate_binary_image(binary_image, dilation_iterations)

Dilate a supplied binary image a given number of times.

Parameters

binary_image : npt.NDArray Binary image to be dilated. dilation_iterations : int Number of dilation iterations to be performed.

Returns

npt.NDArray Dilated binary image.

Source code in topostats/plottingfuncs.py
def dilate_binary_image(binary_image: npt.NDArray, dilation_iterations: int) -> npt.NDArray:
    """
    Dilate a supplied binary image a given number of times.

    Parameters
    ----------
    binary_image : npt.NDArray
        Binary image to be dilated.
    dilation_iterations : int
        Number of dilation iterations to be performed.

    Returns
    -------
    npt.NDArray
        Dilated binary image.
    """
    binary_image = binary_image.copy()
    for _ in range(dilation_iterations):
        binary_image = binary_dilation(binary_image)

    return binary_image

load_mplstyle(style)

Load the Matplotlibrc parameter file.

Parameters

style : str | Path Path to a Matplotlib Style file.

Source code in topostats/plottingfuncs.py
def load_mplstyle(style: str | Path) -> None:
    """
    Load the Matplotlibrc parameter file.

    Parameters
    ----------
    style : str | Path
        Path to a Matplotlib Style file.
    """
    if style == "topostats.mplstyle":
        plt.style.use(resources.files(topostats) / style)
    else:
        plt.style.use(style)

set_n_ticks(ax, n_xy)

Set the number of ticks along the y and x axes and lets matplotlib assign the values.

Parameters

ax : plt.Axes.axes The axes to add ticks to. n_xy : list[int, int] The number of ticks.

Returns

plt.Axes.axes The axes with the new ticks.

Source code in topostats/plottingfuncs.py
def set_n_ticks(ax: plt.Axes.axes, n_xy: list[int | None, int | None]) -> None:
    """
    Set the number of ticks along the y and x axes and lets matplotlib assign the values.

    Parameters
    ----------
    ax : plt.Axes.axes
        The axes to add ticks to.
    n_xy : list[int, int]
        The number of ticks.

    Returns
    -------
    plt.Axes.axes
        The axes with the new ticks.
    """
    if n_xy[0] is not None:
        xlim = ax.get_xlim()
        xstep = (max(xlim) - min(xlim)) / (n_xy[0] - 1)
        xticks = np.arange(min(xlim), max(xlim) + xstep, xstep)
        ax.set_xticks(np.round(xticks))
    if n_xy[1] is not None:
        ylim = ax.get_ylim()
        ystep = (max(ylim) - min(ylim)) / (n_xy[1] - 1)
        yticks = np.arange(min(ylim), max(ylim) + ystep, ystep)
        ax.set_yticks(np.round(yticks))

handler: python options: docstring_style: numpy rendering: show_signature_annotations: true