Plottingfuncs Modules
Plotting data.
Images
Plots image arrays.
Parameters
data : npt.NDarray Numpy array to plot. output_dir : str | Path Output directory to save the file to. filename : str Filename to save image as. style : str | Path Filename of matplotlibrc parameters. pixel_to_nm_scaling : float The scaling factor showing the real length of 1 pixel in nanometers (nm). masked_array : npt.NDarray Optional mask array to overlay onto an image. plot_coords : npt.NDArray ??? Needs defining. title : str Title for plot. image_type : str The image data type, options are 'binary' or 'non-binary'. image_set : str The set of images to process, options are 'core' or 'all'. core_set : bool Flag to identify image as part of the core image set or not. pixel_interpolation : str, optional Interpolation to use (default is 'None'). cmap : str, optional Colour map to use (default 'nanoscope', 'afmhot' also available). mask_cmap : str Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast). region_properties : dict Dictionary of region properties, adds bounding boxes if specified. zrange : list Lower and upper bound to clip core images to. colorbar : bool Optionally add a colorbar to plots, default is False. axes : bool Optionally add/remove axes from the image. num_ticks : tuple[int | None] The number of x and y ticks to display on the iage. save : bool Whether to save the image. savefig_format : str, optional Format to save the image as. histogram_log_axis : bool Optionally use a loagrithmic y-axis for the histogram plots. histogram_bins : int, optional Number of bins for histograms to use. savefig_dpi : str | float, optional The resolution of the saved plot (default 'figure').
Source code in topostats/plottingfuncs.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 | |
__init__(data, output_dir, filename, style=None, pixel_to_nm_scaling=1.0, masked_array=None, plot_coords=None, title=None, image_type='non-binary', image_set='core', core_set=False, pixel_interpolation=None, cmap=None, mask_cmap='jet_r', region_properties=None, zrange=None, colorbar=True, axes=True, num_ticks=(None, None), save=True, savefig_format=None, histogram_log_axis=True, histogram_bins=None, savefig_dpi=None)
Initialise the class.
There are two key parameters that ensure whether an image is plotted that are passed in from the updated
plotting dictionary. These are the image_set which defines whether to plot 'all' images or just the core
set. There is then the 'core_set' which defines whether an individual images belongs to the 'core_set' or
not. If it doesn't then it is not plotted when image_set == "core".
Parameters
data : npt.NDarray Numpy array to plot. output_dir : str | Path Output directory to save the file to. filename : str Filename to save image as. style : str | Path Filename of matplotlibrc parameters. pixel_to_nm_scaling : float The scaling factor showing the real length of 1 pixel in nanometers (nm). masked_array : npt.NDarray Optional mask array to overlay onto an image. plot_coords : npt.NDArray ??? Needs defining. title : str Title for plot. image_type : str The image data type, options are 'binary' or 'non-binary'. image_set : str The set of images to process, options are 'core' or 'all'. core_set : bool Flag to identify image as part of the core image set or not. pixel_interpolation : str, optional Interpolation to use (default is 'None'). cmap : str, optional Colour map to use (default 'nanoscope', 'afmhot' also available). mask_cmap : str Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast). region_properties : dict Dictionary of region properties, adds bounding boxes if specified. zrange : list Lower and upper bound to clip core images to. colorbar : bool Optionally add a colorbar to plots, default is False. axes : bool Optionally add/remove axes from the image. num_ticks : tuple[int | None] The number of x and y ticks to display on the iage. save : bool Whether to save the image. savefig_format : str, optional Format to save the image as. histogram_log_axis : bool Optionally use a loagrithmic y-axis for the histogram plots. histogram_bins : int, optional Number of bins for histograms to use. savefig_dpi : str | float, optional The resolution of the saved plot (default 'figure').
Source code in topostats/plottingfuncs.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | |
plot_and_save()
Plot and save the image.
Returns
tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
Source code in topostats/plottingfuncs.py
plot_curvatures(image, cropped_images, grains_curvature_stats_dict, all_grain_smoothed_data, colourmap_normalisation_bounds)
Plot curvature intensity and defects of grains in an image.
Parameters
image : npt.NDArray Image to plot. cropped_images : dict Dictionary containing cropped images of grains and the bounding boxes and padding. grains_curvature_stats_dict : dict Dictionary of grain curvature statistics. all_grain_smoothed_data : dict Dictionary containing smoothed grain traces. colourmap_normalisation_bounds : tuple[float, float] Tuple of the colour map normalisation bounds.
Returns
tuple[plt.Figure | None, plt.Axes | None] Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
Source code in topostats/plottingfuncs.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | |
plot_curvatures_individual_grains(cropped_images, grains_curvature_stats_dict, all_grains_smoothed_data, colourmap_normalisation_bounds)
Plot curvature intensity and defects of individual grains.
Parameters
cropped_images : dict Dictionary of cropped images. grains_curvature_stats_dict : dict Dictionary of grain curvature statistics. all_grains_smoothed_data : dict Dictionary containing smoothed grain traces. colourmap_normalisation_bounds : tuple Tuple of the colour map normalisation bounds.
Source code in topostats/plottingfuncs.py
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | |
plot_histogram_and_save()
Plot and save a histogram of the height map.
Returns
tuple | None Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
Source code in topostats/plottingfuncs.py
save_figure()
Save figures as plt.savefig objects.
Returns
tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
Source code in topostats/plottingfuncs.py
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 | |
add_bounding_boxes_to_plot(fig, ax, shape, region_properties, pixel_to_nm_scaling)
Add the bounding boxes to a plot.
Parameters
fig : plt.figure.Figure Matplotlib.pyplot figure object. ax : plt.axes._subplots.AxesSubplot Matplotlib.pyplot axes object. shape : tuple Tuple of the image-to-be-plot's shape. region_properties : list Region properties to add bounding boxes from. pixel_to_nm_scaling : float The scaling factor from px to nm.
Returns
tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object.
Source code in topostats/plottingfuncs.py
add_pixel_to_nm_to_plotting_config(plotting_config, pixel_to_nm_scaling)
Add the pixel to nanometre scaling factor to plotting configs.
Ensures plots are in nanometres and not pixels.
Parameters
plotting_config : dict TopoStats plotting configuration dictionary. pixel_to_nm_scaling : float Pixel to nanometre scaling factor for the image.
Returns
dict Updated plotting config with the pixel to nanometre scaling factor applied to all the image configurations.
Source code in topostats/plottingfuncs.py
dilate_binary_image(binary_image, dilation_iterations)
Dilate a supplied binary image a given number of times.
Parameters
binary_image : npt.NDArray Binary image to be dilated. dilation_iterations : int Number of dilation iterations to be performed.
Returns
npt.NDArray Dilated binary image.
Source code in topostats/plottingfuncs.py
load_mplstyle(style)
Load the Matplotlibrc parameter file.
Parameters
style : str | Path Path to a Matplotlib Style file.
Source code in topostats/plottingfuncs.py
set_n_ticks(ax, n_xy)
Set the number of ticks along the y and x axes and lets matplotlib assign the values.
Parameters
ax : plt.Axes.axes The axes to add ticks to. n_xy : list[int, int] The number of ticks.
Returns
plt.Axes.axes The axes with the new ticks.
Source code in topostats/plottingfuncs.py
handler: python options: docstring_style: numpy rendering: show_signature_annotations: true